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ABSTRACT. Let R be a commutative integral domain with quotient field
K and let P be a nonzero strongly prime ideal of R. We give several
characterizations of such ideals. It is shown that (P : P) is a valuation
domain with the unique maximal ideal P. We also study when P~1 is
a ring. In fact, it is proved that P~' = (P : P) if and only if P is not
invertible. Furthermore, if P is invertible, then R = (P : P) and P is a
principal ideal of R.
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1. INTRODUCTION

In this paper, we consider a commutative integral domain R in which a
nonzero prime ideal P has the property that whenever P contains the product
xy of two elements of the quotient field of R, then z € P or y € P. Such
prime ideals are called strongly prime ideal. In the second section of the paper,
several characterizations of strongly prime ideals are given. The third section
is concluded with a study of the dual of the strongly prime ideals of R.

Throughout this paper, R will be a commutative integral domain, K will
denote its quotient field and I will be a nonzero ideal of R. The R-submodule
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J of K is called a fractional ideal if there exists an element a € R such that
aJ C R. For a nonzero fractional ideal J of R, the fractional ideal
(R:J)={xze€ K|xJ CR} is called the dual of J and is denoted by
J~1. In [8], Huckaba and Papick studied the question of when I~ is a ring,
and this question has received further attention in [1-4] and [6,7].

We note that while (I : I) is always an overring of R, /=1 need not be a ring
at all. In fact, (I : I) is the largest overring of R in which I is still an ideal.
Clearly (I : I) C I~!, and if we have equality, then I~! is a ring. Example 3.1
of [1] shows that I~! may be a ring strictly containing (I : I). Our purpose
here is to study P~!, where P is a strongly prime ideal of R. We start by
recalling the following results proved in [7] and [8].

Proposition 1.1. ( See [8; Lemma 2.0] ) If I is a proper invertible ideal of R,
then 171 is not a subring of K.

Proposition 1.2. ( See [8; Proposition 2.3] ) Let 0 # P be a prime ideal of R.
Then P~ is a subring of K if and only if P~ = (P : P).

Proposition 1.3. ( See [8; Proposition 3.5] ) Let I be an ideal of a valuation
domain R. Then I™' is a subring of K if and only if I is a noninvertible prime
ideal.

Proposition 1.4. ( See [7; Proposition 2.1] ) Let I be a nonzero ideal of R for
which I71 is a ring. Then P~ is a ring for each minimal prime ideal of I.

2. STRONGLY PRIME IDEALS

A prime ideal P of R is said to be strongly prime, if whenever zy € P for
x,y € K, then either x € P or y € P. Strongly prime ideals were introduced
by Hedstrom and Houston in [5], in their study of pseudo-valuation domains.
In this section we give several characterizations and properties of such ideals.

Proposition 2.1. Let R be an integral domain and P be a prime ideal of R.
The following statements are equivalent:

1. P is a strongly prime ideal of R.

2. For each element v € K\ P, 1P C P.

3. For every element a € R, aP is comparable to every principal ideal of
R.

4. For every element a € R, aP is comparable to every ideal of R.

P C Rz, for every x € K\ P.

6. If P C Rx and P C Ry, for x,y € K, then P C Rxy.

ot
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Proof. 1 = 2. We assume that z € K \ P. Thus z(z7'P) = (za~ )P = P.

Since P is strongly prime and x ¢ P, we have z~!P C P.

2 = 3. Let 0 # a € R. For every element z € R, if ad € P, then x € aP
a

and so Rx C aP. If l ¢ P, then Yp— (E)_lP C P, by assumption. Hence
aP C Px C Rx. “ v “

3 = 4. Let I be an ideal of R and a € R. If I € aP, then there exists an
element = € I such that ¢ aP. Thus aP C Rz C I, by 3.

4= 5. Let x € K\ P. Thus z = %,for some a,b € R. If bP Z Ra, then

Ra C bP, by 4. Hence x = % S R% C P, a contradiction. Therefore bP C Ra

and so P C R% = Rzx. It is clear that P # Rx.

5 = 6. Let P C Rx and P C Ry, for some x,y € K. If xy € P, then zy € Ry
and so xy = ry, for some r € R. Hence x = r € R. Similarly, we can show
that y € R. Since P is prime ideal and zy € P, then x € P or y € P. Thisis a
contradiction. Therefore zy ¢ P and consequently P C Rxy, by assumption.
6 = 1. It is obvious. OJ

It is clear that if P is a strongly prime ideal of R, then P is a strongly prime
ideal of (P : P). It follows from Proposition 2.1 that, P is a strongly prime
ideal of R if and only if x=!P C P, for every element x € K \ P. Therefore
x71 € (P: P), for each x € K \ P, and so we have:

Corollary 2.2. Let R be an integral domain and P be a strongly prime ideal
of R. Then (P : P) is a valuation domain with mazimal ideal P. O

Corollary 2.3. Every prime ideal contained in a strongly prime ideal of R is
strongly prime. [

Corollary 2.4. Let R be an integral domain and P be a nonzero strongly prime
ideal of R. Then we have:

1. For every element x € R\ P, P = xP.
2. If S is a multiplicatively closed subset of R and P NS = @, then P is
an ideal of Rg and PRs = P.

Proof. 1. Let z € R\ P. Then P C Rz, by 5 of Proposition 2.1. Thus for
each element a € P, there exists r € R such that ro = a € P and so r € P.
Hence P C P C P. Therefore P = xP.

2. Now, we assume that g € PRg, then a € P and so a = rs, for some r € P.

Therefore e re P. O
s s
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Definition 2.5. A proper ideal I of R is called a divided ideal, if it is compa-
rable to every ideal of R.

We note that every strongly prime ideal of R is divided, by 4 of Proposition
2.1. Therefore we can conclude

Corollary 2.6. Let R be an integral domain and P be a strongly prime ideal
of R. Then

1. P C J(R), where J(R) is the Jacobson radical of R.
2. If P is a minimal prime ideal of the ideal I of R, then \/I = P. Hence
P is the unique minimal prime ideal of I. O

Now, we give another characterization of a strongly prime ideal in terms
of properties of valuation domains. Before stating the next Proposition, we
recall a result about valuation domains. The set of all ideals of a valuation
domain are linearly ordered with respect to inclusion. Corollary 2.2 concludes
the following:

Proposition 2.7. Let R be an integral domain and P be an ideal of R. The
following statements are equivalent:

1. P is a strongly prime ideal of R.

2. (P : P) is a valuation domain with mazimal ideal P.

3. P is a prime ideal of (P : P) and the ideals of (P : P) are linearly
ordered.

4. P is a prime ideal of (P : P) and every principal ideal of (P : P) is a
divided ideal.

5. There exists a valuation domain T containing R such that P is a prime
ideal of T'. [J

The following is an example of a prime ideal P of R such that (P : P) is a
valuation domain, but P is not a prime ideal of (P : P). Therefore P is not a
strongly prime ideal of R.

Example 2.8 Let R = Q[[z2,2%]]. Then R is a local ring with maximal ideal
P =< 2?23 >. Tt is clear that P~! = (P : P) = Q[[z]] is a valuation domain,
but P is not a prime ideal of (P : P), because = ¢ P and 2% € P.

We can now prove a result which shows that an invertible strongly prime
ideal is a principal maximal ideal.

Theorem 2.9. Let R be an integral domain and P be a nonzero strongly prime
ideal of R. If P is invertible, then R is a valuation domain with maximal ideal
P. Furthermore, P is a principal ideal.
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Proof. Since P is invertible, PP~! = Randso 1 = Z a;b;, for some elements
i=1

ai,as, -+ ,a, of P and by, by, -+ by, of P71 For every element a € R\ P, we

have P = aP, by 1 of Corollary 2.4. Thus, for each 4, (1 < i < n), there exists

an element s; € P such that as; = a;. Hence,

n n n
1= Zaibi = Z asibi = a(z Szbz)
i=1 i=1 i=1
Since s;b; € PP~! = R, for all 4, a is an unit of R. Therefore P is the unique
maximal ideal of R and consequently R is quasi-local.
For every element z € K \ R, 27 'P C P, by 2 of Proposition 2.1, and
so 7 'a; € P, for all i. Thus z 'a;b; € PP~! = R, for all i. Hence

!l = xil(z aib;) = melaibi € R. Therefore R is a valuation domain
i=1 i=1

and by Corollary 2.2, R = (P : P). On the other hand, since P is an invertible

ideal of a quasi-local ring, P is a principal ideal. (]

3. DUAL OF A STRONGLY PRIME IDEAL

In general, a prime ideal P of R need not be a prime ideal of (P : P), ( see
[8; Example 2.5] ). In [8; Proposition 2.4] it is proved that if P~! is a ring,
for a prime ideal P which is not divisorial, then P is a prime ideal of P~1. In
this section, we show that if 0 # P is a strongly prime ideal of R which is not
maximal, then P~! = (P : P) = Rp is a valuation domain with the maximal
ideal P.

Theorem 3.1. Let R be an integral domain and M be a strongly prime ideal
of R. For every prime ideal P, if P C M, then (P : P) = Rp is a valuation
domain with mazximal ideal P. Furthermore, if R is Noetherian, then dimRp <
1.

Proof. By Corollary 2.3, P is a strongly prime ideal and so T = (P : P) is a
valuation domain with the unique maximal ideal P, by Corollary 2.2. We now
prove that T'= Rp. Let x € R\ P. Then 2! € T, by 2 of Proposition 2.1,
and consequently Rp C T.

Conversely, let # € T. If € R, then z € Rp and if x ¢ R, then 2= € T'\ P.

1
Now, if z7! € R, then 2 = — € Rp. If x~! ¢ R, consider an element
x

s € M\ P, we have (sz)z=! = s € M. Since M is a strongly prime ideal
and 27! ¢ M, a = szt € M C R. Therefore x = 4 € Rp and consequently
S
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(P: P)=Rp. Now, if R is Noetherian, then P is a principal ideal of Rp, by
[9; Theorem 5.9], and so dimRp = htP < 1, by Krull’s principal ideal Theorem
[10; Theorem 15.2]. O

The next result is a generalization of Proposition 1.3 and [8; Corollary 3.6].
Example 2.8 shows that P~! may be a valuation domain, but P is not a strongly
prime ideal.

Theorem 3.2. If P is a nonzero strongly prime ideal of R, then P~ is a
valuation domain if and only if P is a noninvertible ideal. Furthermore, in this
case, we have P~* = (P : P) and P is the unique mazimal ideal of P71,

Proof. If P~! is a ring, then P is not invertible, by Proposition 1.1. We now
assume that P is not invertible. By Corollary 2.2, it is enough to prove that
PP C P Letae Pandbe P! If ab € P, then (ab)~! € (P : P), by
2 of Proposition 2.1. Hence b=! = a(ab)™! € P, and so 1 = b~1b € PP~ L.
Therefore PP~! = R. This contradicts the fact that P is not invertible. [J

Corollary 3.3. Let P be a nonzero strongly prime ideal of R. If P is a maxi-
mal ideal of R, then either P is an invertible ideal or P~! is a ring. O

An integral domain R is called a pseudo-valuation domain, if each prime
ideal of R is strongly prime. Obviously, every valuation domain is a pseudo-
valuation domain, but there exists a pseudo-valuation domain which is not a
valuation domain, (see [5; Example 2.1 and Example 3.6]). By 4 of Proposition
2.1, it is clear that every pseudo-valuation domain R is quasi-local and so each
invertible ideal of R is principal. Therefore, Theorem 3.1 and Corollary 3.2
imply that

Corollary 3.4. Let R be a pseudo-valuation domain with the unique mazximal
ideal M. Then for every nonzero prime ideal P # M of R, Pt = (P : P) =
Rp is a valuation domain with maximal ideal P. Furthermore, if M is not
principal, then M~ is a ring and M~ = (M : M). O

Proposition 3.5. Let R be an integral domain and P be a nonzero strongly
prime ideal of R. If Q = ﬂ P™, then
n=1
1. Q is a strongly prime ideal of R.
2. If P # P2, then either Q = {0} or Q™! is a valuation domain.

Proof. 1. It is clear that @ is an ideal of R. Let T'= (P : P). By Corollary 2.2,
T is a valuation domain with maximal ideal P. Thus for every a € T, aP C P
and so aP™ C P™, for each integer n. Hence P" is an ideal of T, for all n, and
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so @ is an ideal of T. Moreover, P" is a divided ideal of T. Now we assume
that z,y € T and zy € Q. If x € @, then z ¢ P" for some integer n. Thus
P" C Tx. Hence for each integer m, we have

xy € Tey CQ C P = pPmp" C Py

and so y € P™. Therefore y € @ and so @ is a prime ideal of T. Hence @ is
a prime ideal of R. Since @ C P and P is a strongly prime ideal of R, @ is a
strongly prime ideal of R, by Corollary 2.3.

2. Let Q # {0}. Since P # P2, we have Q C P. Then ( is not maximal and
so @ is not invertible, by Theorem 2.9. Therefore Q! is a valuation domain,
by Theorem 3.2. [J

Theorem 3.6. Let R be an integral domain and P be a minimal prime ideal
of the ideal I of R. Suppose also that P is a strongly prime ideal of R. Then
we have:

1. I:I)C (P:P).

2. If for eachx € I, 2> € I, then "' = (P : I).

3. If " is a ring, then "' = P71 =(P: P)=(P:1I).
Proof. 1. Letae€ (I:1I)and b€ P. Then by 2 of Corollary 2.6, b™ € I, for
some integer n, also, we have a’™ € (I : I). Hence (ab)™ = a™b"™ € I C P. Since
P is a strongly prime ideal, ab € P and so aP C P. Therefore (I : I) C (P : P).
2. It is clear that (P : 1) C (R:I) = I"*. We now assume that a € 1.
Thus a? € I7! and so a?I C R. For every element = € I, we have a’z € R.
Hence (ax)? = a?z? = (a®x)r € I C P, and consequently ax € P. Therefore
al CP. Thena€ (P:1).
3. Since I! is a ring, P! also is a ring, by Proposition 1.4. Then P~! =
(P : P), by Proposition 1.2. Moreover, by 2, [=! = (P : I). Now, ifa € (P : )
then a™ € (P : I), for all m, because I~! is a ring, and so a™I C P,
for each m. For every b € P, we have b" € I, for some integer n. Hence
(ab)™ = a™b™ € a™I C P and consequently ab € P, because P is a strongly
prime ideal. Thus a € (P : P). Therefore 7' = (P:I)C (P:P)= P71 On
the other hand, (P : P) C (P :I), because I C P. J

We recall that, every ideal of a Dedekind domain is an invertible ideal.
Therefore, the next result follows from Theorem 2.8 and Corollary 2.3.

Proposition 3.7. Let R be a Dedekind domain and P a nonzero strongly

prime ideal of R. Then R is a valuation domain with the unique prime ideal
pP.O

Acknowledgement. I would like to thank the referee for the valuable
suggestion.



26 Reza Jahani-Nezhad

REFERENCES

[1] D. F. Anderson, When the dual of an ideal is a ring?, Houston J. Math., 9 (3) (1983),
325-332.
[2] M. Fontana, J. A. Huchaba and I. J. Papick, Divisorial ideals in Priifer domains, Canad.
Math. Bull., 27 (1984), 324-328.
[3] M. Fontana, J. A. Huchaba and I. J. Papick, Some properties of divisorial prime ideals
in Priifer domains, J. Pure Appl. Algebra 39 (1986), 95-103.
[4] M. Fontana, J. Huchaba and I. Papick, Domains satisfying the trace property, J. Algebra
107 (1987), 169-182.
[5] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1)
(1978), 137-147.
[6] W. Heinzer and I. Papick, The radical trace property, J. Algebra, 112 (1988), 110-121.
[7] E. Houston, S. Kabbaj, T. Lucas, and A. Mimouni, When is the dual of an ideal a ring?,
J. Algebra, 225 (2000), 429-450.
(8] J. A. Huckaba and I. J. Papick, When the dual of an ideal is ring?, Manuscripta Math.
37 (1982), 67-85.
[9] M. D. Larsen and P. J. MacCarthy, Multiplicative theory of ideals, Academic press, 1971.
[10] R.Y. Sharp, Steps in commutative algebra, Cambridge university press, 1990.





